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1 SUPPLEMENTARY FIGURES
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Figure S1: Examples of 5-cliques with various degrees of directionality, as well as the square of the
difference of the in-degree and out-degree of all their nodes.
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Figure S6: A1: Examples of directed graphs. (i) An acyclic graph. Vertex 1 is a source. Vertices 2 and 3
are sinks. (ii) A graph with one reciprocal connection, two cycles and no sources or sinks. (iii) A graph
containing a cycle on the vertices 2, 3 and 4. Vertex 1 is a source. There are two directed paths from vertex
1 to vertex 3: 1-4-3 and 1-2-4-3. A2: Directed flag complexes associated to the directed graphs in A1. (i)
Two 2-simplices correspond to the two directed 3-cliques. (ii) One 2-simplex corresponds to one directed
3-clique. The reciprocal connection contributes an additional 1-simplex, but not another 2-simplex. (iii)
One 2-simplex corresponds to a single directed 3-clique. The cycle does not contribute a 2-simplex. B:
(i) A Hasse diagram that is not stratified, due to the edge from the vertex 1 to 5. (ii) A stratified Hasse
diagram, where vertices 5, 6, and 7 are the vertices of level 0, vertices 2, 3, and 4 are of level 1, and vertex
1 is of level 2. This is also an admissible Hasse diagram, where the outgoing edges are ordered from left to
right. Vertex 2 is a front face of vertex 1, while vertex 3 is neither a front nor a back face of a vertex 1, and
vertex 4 is back face of a vertex 1. C1: The geometric realization of a simplicial complex consisting of
seven 0-simplices (labeled 1,...,7), ten 1-simplices, and four 2-simplices. The orientation on the edges is
denoted by arrows, i.e., the tail of an arrow is its source vertex, while the head of an arrow is its target.
C2: The Hasse diagram corresponding to the simplicial complex above. Level k vertices correspond to
k-simplices of the complex and are labeled by the ordered sets of vertices that constitute the corresponding
simplex. Note that, e.g., vertex 23 is a back face of a vertex 123 and a front face of a vertex 234.
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Figure S8: A: Mean pairwise correlation of neurons in microcircuit during the first 250ms of each stimulus,
vs. mean firing rate in the same time range. B-F: Correlation vs. topological metrics.
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2 SUPPLEMENTARY METHODS

2.1 Proof: Maximal Directionality of Directed Simplices

We defined the directionality of G to be the sum over all vertices of the square of their signed degrees,
i.e.,

Dr(G) =
∑
v∈V

sd(v)2.

Let Gn denote a directed n-simplex, i.e., a fully connected directed graph on n+1 vertices such that every
fully connected subgraph has a unique source and a unique sink, and which therefore has no reciprocal
connections.

PROPOSITION 1. If G is a directed graph on n + 1 vertices, then Dr(G) ≤ Dr(Gn). If additionally G
is a fully connected directed graph without reciprocal connections, then equality holds if and only if G is
isomorphic to Gn as a directed graph.

PROOF. We prove this result by induction on n. Observe that it holds trivially for n = 1, since every
complete directed graph on two vertices is a directed 1-simplex. Assume that the proposition holds for all
n < N , and let G be a complete directed graph on N + 1 vertices, v0, ..., vN . Without loss of generality,
suppose that the signed degree of v0 is maximal, i.e., sd(v0) ≥ sd(vi) for all i ≥ 1.

Create a new graph G′ by reversing the direction of each edge that is directed away from v0, so that v0

becomes a sink in G′. Let v′0, . . . , v
′
N denote the vertices of G′, such that v′i is the vertex corresponding to

vi. Then sd(v′0) = N , and for each i ≥ 1 such that the edge from v0 to vi was reversed, one has

sd(v′i) = sd(vi)− 2,

since only edges involving v0 can change when passing from G to G′.

Let k be the number of edges in G that change orientation in passing from G to G′. Observe that

Dr(G′) = (sd(v0) + 2k)2 +
∑

edge from v0
unchanged

sd(vj)
2 +

∑
edge from v0

reversed

(sd(vi)− 2)2

= Dr(G) + 4
∑

edge from v0
reversed

(sd(v0)− sd(vi)︸ ︷︷ ︸
≥0 ∀i

) + 4k2 + 4k

≥ Dr(G),

where equality holds if and only if k = 0, i.e., if v0 is already a sink in G. Note that if k 6= 0, so that v0 is
not already a sink in G, then no vertex of G is a sink, since sd(v0) ≥ sd(vi) for all i ≥ 1, and a vertex v of
a complete directed graph on N + 1 vertices is a sink if and only if sd(v) = N .

The subgraph G′′ of G′ spanned by the vertices v′1, . . . , v
′
N is a complete directed graph on N vertices.

By induction, Dr(G′′) ≤ Dr(GN−1), with equality holding if and only if G′′ is a directed (N − 1)-simplex.
Therefore

Dr(G) ≤ Dr(G′) = Dr(G′′) +N2 ≤ Dr(GN−1) +N2 = Dr(GN ),

with equality holding only if v0 is a sink in G, and G′′ is a directed (N − 1)-simplex, i.e., if and only if G is
a directed N -simplex.
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Directionality of directed simplices is proportional to the cube of their dimension.

LEMMA 2. For each n ≥ 1,

Dr(Gn) =
n(n+ 1)(n+ 2)

3
.

PROOF. Let v0, . . . vn be the vertices of Gn ordered from sink to source. It is easy to see that the
associated sequence of signed degrees takes the form

n, n− 2, n− 4, . . . , 2, 0,−2, . . . , 4− n, 2− n,−n,

if n is even, and
n, n− 2, n− 4, . . . , 1,−1, . . . , 4− n, 2− n,−n,

if n is odd. Hence

Dr(Gn) =


2
(∑n

k=1 k
2 −

∑n
2
j=1(2j − 1)2

)
, n even

2

(∑n
k=1 k

2 −
∑n−1

2
j=1 (2j)2

)
, n odd

.

Recall the well known formulas

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
, and

n∑
k=1

k =
n(n+ 1)

2
.

If n is even then, using these formulas,

n
2∑

j=1

(2j − 1)2 = 4

n
2∑

j=1

j2 − 4

n
2∑

j=1

j +
n

2
=
n(n+ 1)(n+ 2)

6
− n(n+ 2)

2
+
n

2
=
n(n− 1)(n+ 1)

6
.

Similarly for n odd,
n−1

2∑
j=1

(2j)2 = 4

n−1
2∑

j=1

j2 =
n(n− 1)(n+ 1)

6
.

Hence,

Dr(Gn) = 2

(
n(n+ 1)(2n+ 1)

6
− n(n− 1)(n+ 1)

6

)
=
n(n+ 1)(n+ 2)

3
,

as claimed.

2.2 Generation of Directed Flag Complexes

2.2.1 Hasse Diagrams

A Hasse diagram, otherwise known as a directed acyclic graph, is a directed graphH = (V,E, τ) with
no oriented cycles (Figure S6B). Hasse diagrams can be used to encode various combinatorial, geometric,
and topological structures, such as posets, cubical complexes and simplicial complexes. Below we explain
in detail how to encode simplicial complexes via Hasse diagrams.

A Hasse diagramH is said to be stratified if for each v ∈ V , every path from v to any sink inH has the
same length. Thus in a stratified Hasse diagram the vertices are naturally partitioned into disjoint strata,
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where every directed path from a vertex in the k-th stratum Vk to any sink is of length k. In particular, the
0-th stratrum V0 is the set of sinks ofH. Moreover, for all e ∈ E, there exists k > 0 such that τ1(e) ∈ Vk
and τ2(e) ∈ Vk−1.

A Hasse diagramH is said to be oriented if for every vertex v ∈ H, it is equipped with a linear ordering
of the set Ev of edges with source v. A Hasse diagram is said to be admissible if it is stratified and oriented.

Vertices in the k-th stratum of a stratified Hasse diagramH are said to be of level k. If k < n, and v, u are
vertices of levels k and n respectively, then we say that v is a face of u if there is a directed path inH from
u to v. IfH is also oriented and therefore admissible, and there is a directed path (e1, ..., en−k) from u to v
such that ei is the first element of Eτ1(ei) with respect to the ordering on that set, for all 1 ≤ i ≤ n− k, we
say that v is a front face of u. Similarly, v is a back face of u if there is a path (e1, ..., en−k) from u to v
such that ei is the last element of the set Eτ1(ei) with resect to the ordering on it, for all 1 ≤ i ≤ n − k.
(Figure S6B(ii) and C2).

If G = (V,E, τ) is a directed graph, then G can be equivalently represented by an admissible Hasse
diagram with level 0 vertices V , level 1 vertices E, and directed edges from each e ∈ E to its source and
target. The ordering on the edges in the Hasse diagram is determined by the orientation of each edge e in G.

Every directed simplicial complex S gives rise to an admissible Hasse diagramHS as follows (Figure
S6C1 and C2). The level d vertices of HS are the d-simplices of S. There is a directed edge from each
d-simplex to each of its (d − 1)-faces. The stratification on HS is thus given by dimension, and the
orientation is given by the natural ordering of the faces of a simplex from front to back.

2.2.2 A Data Structure for Hasse Diagrams

The algorithm we use in order to produce the directed flag complex of a directed graph uses Hasse
diagrams as both input and output. Hence the input directed graph G = (V,E, τ) must first be turned into a
Hasse diagram. The output of the algorithm is again an admissible Hasse diagram that encodes the directed
flag complex of the graph.

We represent an admissible Hasse diagramH using vectors to store the references to the vertices of the
diagram. Thus, each vertex v ∈ H stores the following information.

1. Ver(v): A vector of the level 0 vertices ofH that is a list of the 0-faces of v ordered according to the
orientation ofH. If v is at level 0, then Ver(v) = ∅.

2. Tar(v): A vector of references to the vertices that are targets of edges with source v. If v is at level 0,
then Tar(v) = ∅.

3. Src(v): A vector of references to the vertices that are sources of edges with target v.

IfH encodes a directed simplicial complex, then Ver(v) determines the simplex to which v corresponds,
and the vectors Tar(v) and Src(v) determine the faces and co-faces of the simplex to which v corresponds,
respectively.

IfH is admissible Hasse diagram of maximal level d, thenH is represented by an ordered set of d vectors,
where for each 1 ≤ n ≤ d, the n-th vector contains the references to all level n vertices.

In addition, for every vertex v in H of level n ≥ 1 such that Ver(v) = [v0, . . . , vi], the algorithm
temporarily records an auxiliary vector Uv of references to level 0 vertices u inH that satisfy the following
properties:

1. u 6= vi for all 0 ≤ i ≤ n, and

8
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2. for every u ∈ Uv and every 0 ≤ i ≤ n, there exists an edge in G from vi to u.

The vector Uv is dismissed once its function has been fulfilled.

Let Sint denote the size of integer data types, and for any finite set X , let |X| denote its cardinality. Each
edge of an Hasse diagramH is stored in two vertices of the diagram. If each reference requires Sint storage,
then we require O(|E| · Sint) space to store all references, where E is the edge set ofH. In addition, each
vertex v inH the corresponding data structure stores the vectors Ver(v), Tar(v) and Src(v), as explained
above, which requires an additional O(Sint · d) of space per vertex. The total size of a Hasse diagram is
thus bounded by O((Sint · d) · |V |+ |E| · Sint), where V is the vertex set ofH. In particular, the required
storage space grows linearly with the number of vertices and with the number of edges.

Algorithm 1 : Directed flag complex generation.
Input: A Hasse diagramHin encoding the directed graph G = (V,E, τ), (cf. ST4.1.1).
Output: A Hasse diagramH representing the directed flag complex associated to G.

1: SetH = Hin

2: for every level 1 vertex e ∈ H do
3: if exist e1, e2 such that τ1(e1) = τ1(e), τ1(e2) = τ2(e) and τ2(e1) = τ2(e2) = u then
4: Add u to Ue;
5: end if
6: end for
7: dim = 2;
8: repeat
9: next level nodes – empty vector of references to nodes;

10: for top–level vertex e ∈ H do
11: for Every u ∈ Ue do
12: Create a node tu of a Hasse diagram;
13: Ver(tu) = [Ver(e), u];
14: Utu = Ue;
15: Add e to Tar(tu);
16: Add tu to Src(e);
17: for Every bd ∈ Tar(e) do
18: for Every cbd ∈ Src(bd) do
19: if u is the last vertex in Ver(cbd) then
20: Add cbd to Tar(t);
21: Add tu to Src(cbd);
22: Utu = Utu ∩ Ucbd;
23: end if
24: end for
25: end for
26: Add tu to next level nodes;
27: end for
28: end for
29: Add next level nodes toH;
30: dim = dim+ 1;
31: until next level nodes = ∅
32: ReturnH;

2.2.3 Directed Flag Complex Generation Algorithm

The discussion below refers to the pseudo-code given in Algorithm 1.

Line 1: The Hasse diagramH takes as an initial value the input Hasse diagram encoding a directed graph
G = (V,E, τ).

Frontiers 9
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Lines 2 - 7: The for loop initialises the creation of the vectors Ue for level 1 vertices e ∈ H. For every level
1 vertex e, the vector Ue stores the references to all the level 0-vertices that, together with e, will form a
level 2 vertex.

The if condition (Line 3) ensures that whenever the code finds two level 1 vertices {e1, e2} and a level
0 vertex u that satisfy the conditions, the vertex u will be the terminal vertex of the level 2 vertex tu that
will be created in the first iteration of the repeat-until loop (Line 8). Notice also that the same if condition
ensures that each triple of level 1 vertices (e, e1, e2) is naturally ordered as the front, middle and back faces
of a an oriented 2-simplex associated with tu. In particular, e is the front face of tu, and hence the ordering
of Ver(e) can be extended to ordering of Ver(tu), as in Line 13.

Lines 8 - 31: This repeat-until loop is where the complex is generated, where each iteration increases the
dimension by 1.

Fix n ≥ 1, and suppose by induction that all vertices of level less than or equal to n have been constructed.
Fix a level n vertex s with Ver(s) = [v0, . . . , vn] and let u ∈ Us. By definition of the set Us, the code
creates a vertex tu (Line 10), creates Ver(tu) as [Ver(s), u] = [v0, . . . , vn, u], so u is the last vertex in
Ver(tu) (Line 11), and initiates Utu as Us (Line 12). In the next two lines (Lines 13 and 14) s becomes a
target of tu and tu a source of s. Next, in the two for loops of Lines 15 and 16, the code checks for each
level n− 1 vertex bd that is a target of s, and every level n vertex cbd that is a source of bd, whether u is
the last vertex in Ver(cbd) (Line 17). In that case cbd becomes a target of tu and tu becomes a source of
cbd (Lines 18, 19). Since u is the last vertex in Ver(tu), it must be the last vertex in any face of tu that
contains it for the orientation to be preserved, whence the restriction in Line 17. This accounts of all the
co-dimension 1 faces (targets) of tu that are different from s, and by induction hypothesis these faces are
already constructed. Hence tu is declared a new level n + 1 vertex in H. Since in a directed simplicial
complex (in particular a directed flag complex) every simplex is characterised by its ordered list of vertices,
a level n+ 1 vertex t inH with Ver(t) = [v0, . . . , vn, u] can only be constructed once, and hence is equal
to tu. On the other hand, Line 20 ensures that all potential vertices of level larger than n+ 1 of which tu
is a target will be accounted for. It follows that Algorithm 1 does indeed construct construct the Hasse
diagram corresponding to the directed flag complex of the input graph.

If w is a level n+ 1 vertex with Ver(w) = [v0, . . . vn, u], then the level n vertex v that is the front face of
w is a target of w, and u is clearly not present in Ver(v). On the other hand, u is listed in Uv. From Lines
12 and 20 of the algorithm it is clear that Uw ⊂ Uv and moreover that u 6∈ Uw, and so the inclusion is
proper. The cardinalities of the sets U(−) are therefore strictly decreasing for the newly created vertices.
New level n+ 1 vertices are created only if there exists at least one level n vertex t, such that Ut 6= ∅. Since
the cardinality of the U(−) decreases with each iteration of the repeat-until loop (Line 6), the algorithm
will terminate.

2.3 In Vitro Slice Experiments

2.3.1 Slice Preparation

Experiments were carried out according to the Swiss national and institutional guidelines. Fourteen-
to sixteen-day-old nonanesthetized Wistar rats were quickly decapitated, and their brains were carefully
removed and placed in iced artificial cerebrospinal fluid (ACSF). Slices (300 µm) were cut on an HR2
vibratome (Sigmann Elektronik). Parasagittal slices, 1.7− 2.2mm lateral to the midline, were cut to access
primary somatosensory cortex (SSC; above the anterior extremity of the hippocampus±1 mm). Slices were
incubated at 37◦C for 30 to 60 min and then left at room temperature until recording. Cells were visualized
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by infrared differential interference contrast video microscopy using a VX55 camera (Till P-hotonics)
mounted on an upright BX51WI microscope (Olympus). Layer 5 thick-tufted pyramidal cells (L5TTPCs)
were selected according to their large soma size (15− 25µm) and their apparent large trunk of the apical
dendrite. Care was taken to use only parallel slices (i.e., slices that had a cutting plane parallel to the course
of the apical dendrites and the primary axonal trunk). This ensured sufficient preservation of the PCsO
axonal and dendritic arborizations.

2.3.2 Chemicals and Solutions

Slices were continuously superfused with ACSF containing 125 mM NaCl, 25 mM NaHCO3, 2.5 mM
KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2, and 25 mM D-glucose bubbled with 95% O2
and 5% CO2. The intracellular pipette solution contained 110 mM potassium gluconate, 10 mM KCl,
4 mM ATP-Mg, 10 mM phosphocreatine, 0.3 mM GTP, 10 Hepes, and 13 mM biocytin adjusted to
pH 7.3-7.4 with 5 M KOH. Osmolarity was adjusted to 290-300 mOsm L−1 with D-mannitol (25 − 35
mM). The membrane potential values given were not corrected for the liquid junction potential, which is
approximately −14 mV. Chemicals were from Sigma Aldrich or Merck.

2.3.3 Electrophysiological Recordings

Multiple somatic whole-cell recordings (6 to 12 cells simultaneously) were performed with Multiclamp
700B amplifiers (Molecular Devices) in the current clamp mode at 34 ± 1◦C bath temperature. Data
acquisition was performed through an ITC-1600 board (Instrutech) connected to a PC running a custom-
written routine (PulseQ) under IGOR Pro (Wavemetrics). Sampling rates were 5 kHz, and the voltage signal
was filtered with a 2-kHz Bessel filter. Patch pipettes were pulled with a Flaming/Brown micropipette
puller P-97 (Sutter Instruments) or a DMZ puller (Zeitz Instruments) and had an initial resistance of
3-8MΩ. Recordings were achieved with custom C++ software that controlled manipulators, amplifiers,
oscilloscopes, pipette pressure, and video display.

2.3.4 Stimulation Protocols

Monosynaptic, direct excitatory connections were identified by stimulation of a presynaptic cell with a
20− 70 Hz train of 5− 15 strong and brief current pulses (1− 2 nA, 2− 4 ms) followed by a so-called
recovery test response 0.5s after the end of the train (not shown in the traces), all precisely and reliably
eliciting action potentials (APs).

2.3.5 Final Somatic Positions

The soma positions were recorded relative to an arbitrary reference point, and the z-axis was oriented
perpendicular to the surface of the slice. After morphological stainings were ready, the y-axis axis was
rotated around the z-axis axis to match the orientation of the apical dendrites. The x-axis was rotated by
the same amount and remained orthogonal to the other two axes.

2.3.6 Connection Amplitudes

The amplitude of excitatory postsynaptic potentials (EPSPs) was measured for events that followed a
resting period of at least 15 s, during which time the presynaptic neurons were not stimulated to produce
APs.

2.4 Optimization of the Parameters for the Transmission-Response Matrices

Starting with firing data from spontaneous activity in the reconstructed microcircuit, we generated
sequences of 20 transmission-response matrices for ∆ti ∈ {1, 2, 5, 10, 20, 50, 100} ms, thus creating 49
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such sequences corresponding to every possible choice of the pair (∆t1,∆t2). We refer to each of these
sequences as the true transmission-response matrices corresponding to the pair (∆t1,∆t2). Here, we
describe the procedure for optimizing the choice of the time intervals ∆t1 and ∆t2 so that the associated
true transmission-response matrices best reflect the actual successful transmission of signals between
neurons in the microcircuit.

2.4.1 Properties of the Transmission-Response Matrix

The nonzero coefficients in a transmission-response matrix are a subset of those in the structural matrix.
Due to the partly stochastic behavior of the in silico microcircuit, the subset will vary even for subsequent
applications of the same stimulus. In fact, even an exact repetition of the same conditions will lead to
different transmission-response matrices, if the random number generator is seeded differently. It follows
that the generation of the transmission-response matrices for a given stimulus should be considered as
a stochastic process. With the correct choice of the parameters ∆ti, the matrices should reflect how the
microcircuit processes a stimulus and thus take into account parameters of neural processing, such as
pre-post synaptic interaction.

To find parameters ∆t1 and ∆t2 that maximize the degree to which neural processing is captured by
the transmission-response matrices, we first develop a stochastic model for synaptic firing that takes into
account neural processing and that depends on ∆t1 and ∆t2. For the purpose of this analysis, we assume
that the true transmission-response matrices are compatible with this model.

Based upon our model for synaptic firing, we formulate a simplified model that ignores neural processing.
For this simplified model and for any choice of parameters ∆t1 and ∆t2, we explain how to obtain
transmission-response matrices from actual firing data, by shuffling the firing data appropriately, then
applying the algorithm for generating a transmission-response matrix of the previous section. Finally,
for each choice of the parameters ∆t1 and ∆t2, we compare the true transmission-response matrices
for spontaneous activity in the reconstructed microcircuit to those obtained by the simplified generation
process. The parameters that we work with in the main body of the paper are the ∆t1 and ∆t2 that
maximize the difference (measured by the ratio of the numbers of ones in the matrices) between the actual
transmission-response matrices and those resulting from the simplified model.

2.4.2 Stochastic Model with Neural Processing

Fix time intervals ∆t1 and ∆t2. LetA = (aij) denote the structural matrix of a reconstructed microcircuit,
and let A(n) = (anij) denote the transmission-response matrix of the n-th time bin, based on firing data
from a trial of simulated activity in the microcircuit, for the given intervals ∆t1 and ∆t2. By Condition (1)
above, if anij = 1 for any n, then aij = 1. It is reasonable to consider A to be static, at least over the time
periods considered here.

We want to compute the probability that anij = 1, given that aij = 1, so we need to determine on which
parameters and properties this probability depends. According to the definition of transmission-response
matrices, a presynaptic and a postsynaptic spike are required for anij to be 1. To simplify the analysis
somewhat, we assume that each neuron ni has a time-dependent, instantaneous firing rate F i(t) that
determines spiking probability at time t, i.e., spiking can be described as an inhomogeneous Poisson
process. Under this assumption, the expected number mi

∆t1
(t0) of spikes of neuron ni in the interval

[t0, t0 + ∆t1] can be computed as

mi
∆t1

(t0) =

∫ t0+∆t1

t0

F i(u)du.
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If Ki
∆t1

(t0) denotes the probability that neuron ni spikes at least once in the interval [t0, t0 + ∆t1], then

Ki
∆t1

(t0) = 1− P
(
mi

∆t1
(t0)
)

= 1− e−m
i
∆t1

(t0),

where P(λ) is the Poisson probability mass function with parameter λ at 0. (Recall that if X is a random
variable that counts the number of spikes of neuron ni in the interval [t0, t0 + ∆t1], then P

(
mi

∆t1
(t0)
)

is
the probability that X = 0.) If the change in F i(t) is slow compared to ∆t1, then mi

∆t1
(t) ≈ F i(t) ·∆t1.

Moreover, 1− P(λ) ≈ λ for small values of λ. For small enough ∆t1, the expected number mi
∆t1

(t0) of
spikes of neuron ni will certainly be small, and change in F i(t) will be slow in compared to ∆t1, so that
we may assume that

Ki
∆t1

(t0) ≈ F i(t0) ·∆t1.

For the postsynaptic spike the situation is more complicated. As there is a causal relation between
presynaptic and postsynaptic firing, mediated by synaptic transmission, we need to estimate the conditional
probability of at least one postsynaptic spike, given that at least one presynaptic spike occured. Let ni
and nj denote neurons such that aij = 1. Let s0 ∈ [t0, t0 + ∆t1] denote the time of the first presynaptic
spike in this interval. Let Xj

∆t2
(s0) denote the random variable whose value is the number of times neuron

nj spiked in the time window [s0, s0 + ∆t2]. Let Y i∆t1(t0) denote the random variable whose value is the
number of times neuron ni spiked in the time interval [t0, t0 + ∆t1]. We need to estimate the conditional
probability

P
(
Xj

∆t2
(s0) > 0 |Y i∆t1(t0) > 0

)
.

The nature of this interaction is very intricate and depends on the identities of the presynaptic and
postsynaptic neurons, the spiking history of the presynaptic neuron before s0, and all other synaptic input
the postsynaptic neuron received. It can be described as governed by some function Gij modulating the
spiking probability of the postsynaptic neuron nj . This function takes as parameters the expected number
of spikes of neuron nj in the interval [s0, s0 +∆t2], the time t0, and the “spiking history” of the presynaptic
neuron ni until s0, which we write as a function si∗(t) evaluated at s0, giving rise to the expression

P
(
Xj

∆t2
(s0) > 0 |Y i∆t1(t0) > 0

)
= 1− e−G

ij(mj
∆t2

(s0),t0,s
i
∗(s0))

.

Summarizing the analysis above, the following formula provides a good estimate of the probability that
anij = 1 if aij = 1, for small enough ∆t1 and ∆t2, where s0 denotes the time of the first presynaptic spike
in the interval [n∆t1, (n+ 1)∆t1] and t0 = n∆t1.

P
(
anij = 1|aij = 1

)
=
(

1− e−m
i
∆t1

(t0)
)
·
(

1− e−G
ij(mj

∆t2
(s0),t0,s

i
∗(s0))

)
≈ F i(t0) ·∆t1 ·Gij

(
F j(s0) ·∆t2, t0, si∗(s0)

)
.

(S1)

This conditional probability encodes not only the distinctive features of the structural connectivity (via
aij) but also the potentially stimulus-dependant neuron-specific firing rates (via F i and F j) and their
co-variation. Most crucially, it captures the stimulus-dependent functional modulation of postsynaptic
firing by a presynaptic spike as well. We assume that the true transmission-reponse matrices capture the
actual transmission of spikes according to the model of synaptic firing described by this formula.
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2.4.3 Null Hypotheses: No Neural Processing

We introduce here a simplified model of synaptic spiking that is based upon formula [S1] but that
ignores pre-post synaptic interaction. We then explain how to obtain transmission-response matrices that
correspond to this simplified model from firing data arising from simulated activity.

We begin by setting each Gij to be the projection onto the first component, ignoring the pre-post synaptic
interaction. After this simplification, the approximation obtained in the previous section now reads

P (anij = 1|aij = 1) ≈ F i(t0) · F j(s0) ·∆t1 ·∆t2,

where s0 denotes the time of the first presynaptic spike that occurs in the interval [n∆t1, (n+ 1)∆t1] and
t0 = n∆t1, as before. Since this drastic simplification neglects the central aspect of neural computation -
pre-post synaptic interaction - it gives rise to control cases for each pair of parameters (∆t1,∆t2) and each
choice of firing rate functions F i(t). Comparison of the true transmission-response matrices for each pair
of parameters to the corresponding control matrices for the same pair and a specific choice of the functions
F i(t) will allow us to determine values for ∆t1 and ∆t2 for which the true transmission-response matrix
optimally reflects neural processing.

We assume moreover that the individual firing rates consist of a neuron-dependent frequency that is up-
or down-regulated by a global time series, i.e., that F i(t) = f(i) · F (t), for some function F (t) and some
constant f(i) for each neuron ni. Transmission-response matrices corresponding to this simplified model
for fixed ∆t1 and ∆t2, which we call simplified transmission-response matrices, can be generated by first
shuffling all recorded spikes from simulated activity in the reconstructed microcircuit, while preserving
both the number of spikes per neuron and per time bin, then applying the usual transmission-response
matrix generation method.

2.4.4 Optimization of Parameters

The difference between the true transmission-response matrices and the control case described above is a
consequence of the pre-post synaptic interaction. Comparison with the control case enables us therefore to
measure how well that interaction is captured in the true transmission-response matrices. In particular, it is
reasonable to optimize the parameters ∆t1 and ∆t2 so that the difference between the true transmission
response matrices arising from actual simulation data and those arising in the control cases is maximized,
as a maximal difference indicates that the effect of the pre-post synaptic interaction is captured optimally
by the true transmission-response matrices.

The comparison between the true transmission-response matrices and the control cases was carried out
by first producing 20 true transmission-response matrices and 20 simplified transmission-response matrices
based on firing data obtained from spontaneous activity in the reconstructed microcircuit for every pair
(∆t1,∆t2), where ∆ti ∈ {1, 2, 5, 10, 20, 50, 100} ms for i = 1, 2. The number of ones in each matrix was
then computed and the average taken over each set of 20 matrices. Since no stimulus was applied to the
microcircuit, the averages computed are meaningful, since the firing data should be fairly homogeneous
across the time bins.
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The average number of ones in the transmission-response matrix arising from simulated actitivity in the
reconstructed microciruit, as a function of ∆t1 and ∆t2, is illustrated in the figure above, which shows
the ratio of the average number of ones in the true transmission-response matrices to the average number
of ones in the simplified transmission-response matrices, for various values of ∆t1 and ∆t2. In all cases
we find that the maximum lies between ∆t2 = 5 ms and ∆t2 = 10 ms, leading us to choose to work with
∆t2 = 10 ms. For ∆t1 we find a maximum at 50 ms, but we use ∆t1 = 5 ms (for which the maximum
ratio is only slightly lower than for ∆t1 = 50 ms) instead to avoid more than one spike per neuron per bin.
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